Sensory and Motor Systems The Neural Code for Motor Control in the Cerebellum and Oculomotor Brainstem†‡
نویسندگان
چکیده
Spike trains are rich in information that can be extracted to guide behaviors at millisecond time resolution or across longer time intervals. In sensory systems, the information usually is defined with respect to the stimulus. Especially in motor systems, however, it is equally critical to understand how spike trains predict behavior. Thus, our goal was to compare systematically spike trains in the oculomotor system with eye movement behavior on single movements. We analyzed the discharge of Purkinje cells in the floccular complex of the cerebellum, floccular target neurons in the brainstem, other vestibular neurons, and abducens neurons. We find that an extra spike in a brief analysis window predicts a substantial fraction of the trial-by-trial variation in the initiation of smooth pursuit eye movements. For Purkinje cells, a single extra spike in a 40 ms analysis window predicts, on average, 0.5 SDs of the variation in behavior. An optimal linear estimator predicts behavioral variation slightly better than do spike counts in brief windows. Simulations reveal that the ability of single spikes to predict a fraction of behavior also emerges from model spike trains that have the same statistics as the real spike trains, as long as they are driven by shared sensory inputs. We think that the shared sensory estimates in their inputs create correlations in neural spiking across time and across each population. As a result, one or a small number of spikes in a brief time interval can predict a substantial fraction of behavioral variation.
منابع مشابه
Evidence for brainstem structures participating in oculomotor integration.
The cerebellar flocculus has been implicated in vestibulo-oculomotor control. One major central input to this structure originates from brainstem cells in the paramedian tract (PMT), whose function is unknown. Here it is reported that PMT cells in the pons carry vestibular and eye movement signals and their pharmacological inactivation produces a leaky integrator combined with vestibular imbala...
متن کاملThe Neural Code for Motor Control in the Cerebellum and Oculomotor Brainstem†‡
A single extra spike makes a difference. Here, the size of the eye velocity in the initiation of smooth eye movements in the right panel depends on whether a cerebellar Purkinje cell discharges 3 (red), 4 (green), 5 (blue), or 6 (black) spikes in the 40-ms window indicated by the gray shading in the rasters on the left. Spike trains are rich in information that can be extracted to guide behavio...
متن کاملOcular motor syndromes of the brainstem and cerebellum.
PURPOSE OF REVIEW The brainstem and cerebellum contain many neuronal types that play a critical role in eye movement control. In a physiological approach, understanding how these neuronal assemblies cooperate provides strong insight into general brain functions. Furthermore, eye movements provide an interesting model for understanding neural mechanisms of sensorimotor learning, and a knowledge ...
متن کاملExtraction of Sensory part of Ulnar Nerve Signal Using Blind Source Separation Method
A recorded nerve signal via an electrode is composed of many evokes or action potentials, (originated from individual axons) which may be considered as different initial sources. Recovering these primitive sources in its turn may lead us to the anatomic originations of a nerve signal which will give us outstanding foresights in neural rehabilitations. Accordingly, clinical interests may be r...
متن کاملDistinct neural circuits for control of movement vs. holding still.
In generating a point-to-point movement, the brain does more than produce the transient commands needed to move the body part; it also produces the sustained commands that are needed to hold the body part at its destination. In the oculomotor system, these functions are mapped onto two distinct circuits: a premotor circuit that specializes in generating the transient activity that displaces the...
متن کامل